Gain Enhancement of the Patch Antenna Using TSRR NRI Superstrate

نویسندگان

  • K. A. Devi
  • Ng Chun Hau
  • K. Chakrabarty
  • Norashidah Md. Din
چکیده

This article presents a high gain patch antenna with negative refractive index (NRI) superstrate for the application of Radio frequency energy harvesting system. Triangular split ring resonators (TSRR)-strip line are used as a NRI superstrate to enhance the gain of the patch antenna. It is demonstrated that the proposed triangular split ring resonator (TSRR) structure metamaterial yields negative value of an effective refractive index that over the frequency range of 774 MHz to 974 MHz. The negative refractive index structure is applied as a superstrate to a microstrip patch antenna. The simulation results show that the gain is effectively improved by 2.326 dB (85.96 %) after the incorporation of negative refractive index metamaterial superstrate on to the conventional patch antenna. The results illustrated that the gain of the proposed antenna is enhanced over the desired frequency band 935 MHz to 960 MHz. The air gap between the antenna and superstrate was also studied by applying the theory of Fabry-Perot (F-P) resonant cavity to obtain the optimum air gap of 55 mm to achieve the maximum gain. The proposed antenna is also fabricated and tested, the measured results shown that have good agreement with the simulated results in term of S parameters and radiation characteristics. Keywords— Microstrip patch antenna; triangular split ring resonator; negative refractive index; radio frequency harvesting system; gain

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstrip Antenna Gain Enhancement using Near Zero Refractive Index Metamaterials

Some useful features of microstrip patch antennas are low profile, low weight and easy fabrication. However this type of antenna suffers from having a low gain, caused by propagation surface waves. In this paper, a new near zero refractive index metamaterial (MTM) unit cell is designed and fabricated as a superstrate over a Rectangular Microstrip Patch Antennas (RMPA). In order to obtain a maxi...

متن کامل

Analysis and Design of High Gain NRI Superstrate Based Antenna for RF Energy Harvesting System

A high gain patch antenna inspired by 4 layers of negative refractive index (NRI) metamaterial (MTM) superstrate is proposed to operate at downlink radio frequency (RF) band (935MHz to 960MHz) of GSM 900). The MTM unit cell consists of a nested split ring resonator (SRR) on one side and strip line laminated on other side of FR4 substrate. The effective permeability and permittivityof the unit c...

متن کامل

Enhancement of Inset Feed Microstrip Semicircular Patch Antenna Directivity using Dielectric Superstrate

The subject of enhancing microstrip patch antennas directivity, using either a frequency selective surface (FSS) or a double-negative (DNG) metamaterial slab, has been investigated by a number of researchers in recent years. The purpose of this paper is to show that we can also achieve the same goal by using a much simpler design for the superstrate, namely a dielectric slab, whose performance ...

متن کامل

Shridhar E. Mendhe: Improvement of Parameters of Stacked Microstrip Patch Antenna Using Edge Coupled Parasitic Patches and Metamaterial Superstrate

High directive stacked multilayer and edge coupled planar microstrip patch antenna made from a single-layer helical resonating metamaterial superstrate has been investigated. Metamaterials are artificial materials whose properties not found in nature. These materials have negative permittivity and permeability and negative index of refraction over a frequency band. In this paper, an innovative ...

متن کامل

A New Metasurface Superstrate Structure for Antenna Performance Enhancement

A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016